Combining p-values in replicated single-case experiments with multivariate outcome

  • Solmi F
  • Onghena P
  • 24


    Mendeley users who have this article in their library.
  • 5


    Citations of this article.


Interest in combining probabilities has a long history in the global statistical community. The first steps in this direction were taken by Ronald Fisher, who introduced the idea of combining p-values of independent tests to provide a global decision rule when multiple aspects of a given problem were of interest. An interesting approach to this idea of combining p-values is the one based on permutation theory. The methods belonging to this particular approach exploit the permutation distributions of the tests to be combined, and use a simple function to combine probabilities. Combining p-values finds a very interesting application in the analysis of replicated single-case experiments. In this field the focus, while comparing different treatments effects, is more articulated than when just looking at the means of the different populations. Moreover, it is often of interest to combine the results obtained on the single patients in order to get more global information about the phenomenon under study. This paper gives an overview of how the concept of combining p-values was conceived, and how it can be easily handled via permutation techniques. Finally, the method of combining p-values is applied to a simulated replicated single-case experiment, and a numerical illustration is presented.

Author-supplied keywords

  • Nonparametric combination
  • Permutation testing
  • Probabilities combination
  • Single-case experiments

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • Francesca Solmi

  • Patrick Onghena

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free