The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins

  • Yang Z
  • Niu G
  • Mitchell K
 et al. 
  • 119


    Mendeley users who have this article in their library.
  • 99


    Citations of this article.


The augmented Noah land surface model described in the first part of the two-part series was evaluated here over global river basins. Across various climate zones, global-scale tests can reveal a model's weaknesses and strengths that a local-scale testing cannot. In addition, global-scale tests are more challenging than local- and catchment-scale tests. Given constant model parameters (e. g., runoff parameters) across global river basins, global-scale tests are more stringent. We assessed model performance against various satellite and ground-based observations over global river basins through six experiments that mimic a transition from the original Noah LSM to the fully augmented version. The model shows transitional improvements in modeling runoff, soil moisture, snow, and skin temperature, despite considerable increase in computational time by the fully augmented Noah-MP version compared to the original Noah LSM. The dynamic vegetation model favorably captures seasonal and spatial variability of leaf area index and green vegetation fraction. We also conducted 36 ensemble experiments with 36 combinations of optional schemes for runoff, leaf dynamics, stomatal resistance, and the β factor. Runoff schemes play a dominant and different role in controlling soil moisture and its relationship with evapotranspiration compared to ecological processes such as the β factor, vegetation dynamics, and stomatal resistance. The 36-member ensemble mean of runoff performs better than any single member over the world's 50 largest river basins, suggesting a great potential of land-based ensemble simulations for climate prediction.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • Zong Liang Yang

  • Guo Yue Niu

  • Kenneth E. Mitchell

  • Fei Chen

  • Michael B. Ek

  • Michael Barlage

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free