A comparative insight of potassium vanadates as positive electrode materials for li batteries: Influence of the long-range and local structure

  • Baddour-Hadjean R
  • Boudaoud A
  • Bach S
 et al. 
  • 20

    Readers

    Mendeley users who have this article in their library.
  • 15

    Citations

    Citations of this article.

Abstract

Potassium vanadates with ratio K/V = 1:3, 1:4, and 1:8, prepared by a fast and facile synthesis route, were investigated as positive electrode materials in lithium batteries. KV3O8 and K0.5V2O5 have layered structures, while K0.25V2O5 exhibits a tunnel framework isomorphic to that of β-Na0.33V2O5. The Raman spectra of KV3O8, K0.5V2O5, and K0.25V2O5 compounds are reported here for the first time, and a detailed comparative analysis distinguishes spectral patterns specific to each structural arrangement. The electrochemical performances of these potassium vanadates toward lithium insertion were investigated. The potassium-richer compound KV3O8 shows a good rechargeability in spite of a low discharge capacity of 70 mAh g(-1), while the potassium-poorer bronze K0.25V2O5 exhibits the highest specific capacity of 230 mAh g(-1) but a slow and continuous capacity fade with cycling. We demonstrate that the K0.5V2O5 compound, with its double-sheet V2O5 layered framework characterized by a large interlayer spacing of 7.7 Å, is the best candidate as positive electrode for lithium battery among the potassium-vanadium bronzes and oxides. A remarkable specific capacity of 210 mAh g(-1), combined with excellent capacity retention, is achieved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free