Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method

  • Boyd J
  • Buick J
  • 30


    Mendeley users who have this article in their library.
  • 25


    Citations of this article.


Numerical modelling is a powerful tool for the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall shear is important in the pathogenesis and progression of atherosclerosis. When modelling arterial blood flow it is generally assumed that blood is Newtonian. In this paper, blood flow is modelled in a realistic two-dimensional carotid artery geometry in order to investigate this assumption and its effect on the measurement of near wall shear. The assumption is tested in stenosed and unstenosed geometries and the non-Newtonian blood is modelled using the Carreau-Yasuda model. It is found that the velocity and shear fields, particularly near the walls of the geometries, exhibit small differences in general (

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free