Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice

  • Kanwar P
  • Sanyal S
  • Tokas I
 et al. 
  • 45


    Mendeley users who have this article in their library.
  • 26


    Citations of this article.


Calcium ion is involved in diverse physiological and developmental pathways. One of the important roles of calcium is a signaling messenger, which regulates signal transduction in plants. CBL (calcineurin B-like protein) is one of the calcium sensors that specifically interact with a family of serine-threonine protein kinases designated as CBL-interacting protein kinases (CIPKs). The coordination of these two gene families defines complexity of the signaling networks in several stimulus-response-coupling during various environmental stresses. In Arabidopsis, both of these gene families have been extensively studied. To understand in-depth mechanistic interplay of CBL-CIPK mediated signaling pathways, expression analysis of entire set of CBL and CIPK genes in rice genome under three abiotic stresses (salt, cold and drought) and different developmental stages (3-vegetative stages and 11-reproductive stages) were done using microarray expression data. Interestingly, expression analysis showed that rice CBLs and CIPKs are not only involved in the abiotic stress but their significant role is also speculated in the developmental processes. Chromosomal localization of rice CBL and CIPK genes reveals that only OsCBL7 and OsCBL8 shows tandem duplication among CBLs whereas CIPKs were evolved by many tandem as well as segmental duplications. Duplicated OsCIPK genes showed variable expression pattern indicating the role of gene duplication in the extension and functional diversification of CIPK gene family in rice. Arabidopsis SOS3/CBL4 related genes in rice (OsCBL4, OsCBL5, OsCBL7 and OsCBL8) were employed for interaction studies with rice and Arabidopsis CIPKs. OsCBLs and OsCIPKs are not only found structurally similar but likely to be functionally equivalent to Arabidopsis CBLs and CIPKs genes since SOS3/CBL4 related OsCBLs interact with more or less similarly to rice and Arabidopsis CIPKs and exhibited an interaction pattern comparable with Arabidopsis SOS3/. CBL4. © 2014 Elsevier Ltd.

Author-supplied keywords

  • Abiotic stress
  • Expression
  • Interaction
  • Reproductive development
  • Signaling

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free