Computing life: Add logos to biology and bios to physics

8Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper discusses the interrelations between physics and biology. Particularly, we analyse the approaches for reconstructing the emergent properties of physical or biological systems. We propose approaches to scale emergence according to the degree of state-dependency of the system's component properties. Since the component properties of biological systems are state-dependent to a high extent, biological emergence should be considered as very strong emergence - i.e. its reconstruction would require a lot of information about state-dependency of its component properties. However, due to its complexity and volume, this information cannot be handled in the naked human brain, or on the back of an envelope. To solve this problem, biological emergence can be reconstructed in silico based on experimentally determined rate laws and parameter values of the living cell.According to some rough calculations, the silicon human might comprise the mathematical descriptions of around 105 interactions. This is not a small number, but taking into account the exponentially increase of computational power, it should not prove to be our principal limitation. The bigger challenges will be located in different areas. For example they may be related to the observer effect - the limitation to measuring a system's component properties without affecting the system. Another obstacle may be hidden in the tradition of "shaving away" all " unnecessary" assumptions (the so-called Occam's razor) that, in fact, reflects the intention to model the system as simply as possible and thus to deem the emergence to be less strong than it possibly is. We argue here that that Occam's razor should be replaced with the law of completeness. © 2012 Elsevier Ltd.

Cite

CITATION STYLE

APA

Kolodkin, A., Simeonidis, E., & Westerhoff, H. V. (2013). Computing life: Add logos to biology and bios to physics. Progress in Biophysics and Molecular Biology, 111(2–3), 69–74. https://doi.org/10.1016/j.pbiomolbio.2012.10.003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free