Contrasting stream water NO À in two nearly 3 and Ca adjacent catchments : the role of soil Ca and forest vegetation

  • Christopher S
  • Page B
  • Campbell J
 et al. 
  • 25

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Two nearly adjacent subcatchments, located in the Adirondack Mountains of New York State, US, with similar atmospheric inputs of N (0.6 kmol ha(-1) yr(-1)), but markedly different stream water solute concentrations, provided a unique opportunity to evaluate the mechanisms causing this variation. Subcatchment 14 (S14) had much greater stream water Ca2+ and NO3- concentrations (851 and 73 mu mol(c) L-1, respectively) than Subcatchment 15 (S15) (427 and 26 mu mol(c) L-1, respectively). To elucidate factors affecting the variability in stream water concentrations, soil and forest floor samples from each subcatchment were analyzed for total elemental cations and extractable N species. Mineral soil samples were also analyzed for exchangeable cations. Tree species composition was characterized in each subcatchment and potential differences in land use history and hydrology were also assessed. Compared with S15, soils in S14 had significantly higher total elemental Ca2+ in the forest floor (380 vs. 84 mu mol g(-1)), Bs horizon (e.g. 1361 vs. 576 mu mol g(-1)) and C horizon (1340 vs. 717 mu mol g(-1)). Exchangeable Ca2+ was also significantly higher in the mineral soil (64 mu mol g(-1) in S14 vs. 8 mu mol g(-1) in S15). Extractable NO3- was higher in S14 compared with S15 in both the forest floor (0.1 vs. 0.01 mu mol g(-1)) and Bs horizon (0.2 vs. 0.07 mu mol g(-1)) while extractable NH4+ was higher in S14 vs. S15 in the forest floor (7 vs. 5 mu mol g(-1)). The total basal area of 'base-rich indicator' tree species (e.g. sugar maple, American basswood, eastern hophornbeam) was significantly greater in S14 compared with S15, which had species characteristic of sites with lower base concentrations (e.g. American beech and eastern white pine). The disparity in stream water Ca2+ and NO3-, concentrations and fluxes between S14 and S15 were explained by differences in tree species composition and soil properties rather than differences in land use or hydrology. The marked difference in soil Ca2+ concentrations in S14 vs. S15 corresponded to the higher stream water Ca2+ and the larger contribution of base-rich tree species to the overstory biomass in S14. Soil under such species is associated with higher net mineralization and nitrification and likely contributed to the higher NO3- concentrations in the drainage waters of S14 vs. S15. Studies investigating differences in spatial and temporal patterns of the effects of chronic N deposition on surface water chemistry need to account for changes in tree species composition and how vegetation composition is influenced by soil properties, as well as climatic and biotic changes.

Author-supplied keywords

  • 1
  • 28 august 2005
  • 292 5678
  • 614
  • acer saccharum
  • atmospheric deposition
  • calcium
  • catchment
  • christopher
  • correspondence
  • hydrology
  • land use history
  • march 2005 accepted
  • nitrate
  • nitrogen
  • received 29 june 2004
  • revised version received 23
  • sheila f
  • tel
  • tree species

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • S F Christopher

  • B D Page

  • J L Campbell

  • M J Mitchell

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free