Correlations among the design factors of the CO2 ocean sequestration system, GLAD

  • Niwa K
  • Kosugi S
  • Saito T
 et al. 
  • 7

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

An ocean sequestration method to dispose of a large amount of CO 2 gas has been developed to mitigate global warming. This system is called the gas lift advanced dissolution (GLAD) system. This system works by dissolving CO2 gas into seawater at a depth of 200-300. The CO 2-rich seawater is then transported to a depth greater than 1000 m. This system is composed of short riser pipes for gas-lift and CO2 dissolution, a tank for separating indissoluble gas ingredients from seawater, and long down-comers for transporting CO2-rich seawater to great depths. For the system to function optimally, the riser pipe needs to be long and wide enough to dissolve CO2 thoroughly. Also the down-comer has to be long enough to transport the CO2-rich seawater to great depths and sufficiently large in diameter to enable transportation of large quantities of seawater. The most important aspect for disposal of CO2 into the ocean is minimizing the environmental impact, especially its influence on marine life. The CO2 concentration of seawater, therefore, must be limited below a certain value in order to minimize the environmental impact. This paper describes a mathematical model of GLAD's internal flow, which was derived to optimize the system specifications, and the correlations among the design factors of GLAD system derived by using this mathematical model. ?? 2004 Elsevier Ltd. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Kentaro Niwa

  • Sanai Kosugi

  • Takayuki Saito

  • Takeo Kajishima

  • Kenji Hamaogi

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free