A coupled observation - Modeling approach for studying activation kinetics from measurements of CCN activity

27Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

This paper presents an approach to study droplet activation kinetics from measurements of CCN activity by the Continuous Flow Streamwise Thermal Gradient CCN Chamber (CFSTGC) and a comprehensive model of the instrument and droplet growth. The model, which can be downloaded from http://nenes.eas.gatech.edu/ Experiments/CFSTGC.html, is evaluated against a series of experiments with ammonium sulfate calibration aerosol. Observed and modeled droplet sizes are in excellent agreement for a water vapor uptake coefficient ∼0.2, which is consistent with theoretical expectations. The model calculations can be considerably accelerated without significant loss of accuracy by assuming simplified instrument geometry and constant parabolic flow velocity profiles. With these assumptions, the model can be applied to large experimental data sets to infer kinetic growth parameters while fully accounting for water vapor depletion effects and changes in instrument operation parameters such as the column temperature, flow rates, sheath and sample flow relative humidities, and pressure. When the effects of instrument operation parameters, water vapor depletion and equilibrium dry particle properties on droplet size are accounted for, the remaining variations in droplet size are most likely due to non-equilibrium processes such as those caused by organic surface films, slow solute dissociation and glassy or highly viscous particle states. As an example of model application, data collected during a research flight in the ARCTAS 2008 campaign are analyzed. The model shows that water vapor depletion effects can explain changes in the observed average droplet size. © Author(s) 2012. CC Attribution 3.0 License.

Cite

CITATION STYLE

APA

Raatikainen, T., Moore, R. H., Lathem, T. L., & Nenes, A. (2012). A coupled observation - Modeling approach for studying activation kinetics from measurements of CCN activity. Atmospheric Chemistry and Physics, 12(9), 4227–4243. https://doi.org/10.5194/acp-12-4227-2012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free