Skip to content
Journal article

Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site - Results of the EGER experiment

Foken T, Meixner F, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z ...see all

Atmospheric Chemistry and Physics, vol. 12, issue 4 (2012) pp. 1923-1950

  • 34

    Readers

    Mendeley users who have this article in their library.
  • 26

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

To investigate the energy, matter and reactive and non-reactive trace gas exchange between the atmosphere and a spruce forest in the German mountain region, two intensive measuring periods were conducted at the {FLUXNET} site {DE-Bay} {(Waldstein-Weidenbrunnen)} in {September/October} 2007 and {June/July} 2008. They were part of the project {"ExchanGE} processes in mountainous Regions" {(EGER).} Beyond a brief description of the experiment, the main focus of the paper concerns the coupling between the trunk space, the canopy and the above-canopy atmosphere. Therefore, relevant coherent structures were analyzed for different in- and above canopy layers, coupling between layers was classified according to already published procedures, and gradients and fluxes of meteorological quantities as well as concentrations of non-reactive and reactive trace compounds have been sorted along the coupling classes. Only in the case of a fully coupled system, it could be shown, that fluxes measured above the canopy are related to gradients between the canopy and the above-canopy atmosphere. Temporal changes of concentration differences between top of canopy and the forest floor, particularly those of reactive trace gases {(NO}, {NO2}, O-3, and {HONO)} could only be interpreted on the basis of the coupling stage. Consequently, only concurrent and vertically resolved measurements of micrometeorological (turbulence) quantities and fluxes (gradients) of trace compounds will lead to a better understanding of the forest-atmosphere interaction.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below