Crustal structure of Mars from gravity and topography

318Citations
Citations of this article
261Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Mars Orbiter Laser Altimeter (MOLA) topography and gravity models from 5 years of Mars Global Surveyor (MGS) spacecraft tracking provide a window into the structure of the Martian crust and upper mantle. We apply a finite-amplitude terrain correction assuming uniform crustal density and additional corrections for the anomalous densities of the polar caps, the major volcanos, and the hydrostatic flattening of the core. A nonlinear inversion for Moho relief yields a crustal thickness model that obeys a plausible power law and resolves features as small as 300 km wavelength. On the basis of petrological and geophysical constraints, we invoke a mantle density contrast of 600 kg m-3; with this assumption, the Isidis and Hellas gravity anomalies constrain the global mean crustal thickness to be >45 km. The crust is characterized by a degree 1 structure that is several times larger than any higher degree harmonic component, representing the geophysical manifestation of the planet's hemispheric dichotomy. It corresponds to a distinction between modal crustal thicknesses of 32 km and 58 km in the northern and southern hemispheres, respectively. The Tharsis rise and Hellas annulus represent the strongest components in the degree 2 crustal thickness structure. A uniform highland crustal thickness suggests a single mechanism for its formation, with subsequent modification by the Hellas impact, erosion, and the volcanic construction of Tharsis. The largest surviving lowland impact, Utopia, postdated formation of the crustal dichotomy. Its crustal structure is preserved, making it unlikely that the northern crust was subsequently thinned by internal processes. Copyright 2004 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Neumann, G. A., Zuber, M. T., Wieczorek, M. A., McGovern, P. J., Lemoine, F. G., & Smith, D. E. (2004). Crustal structure of Mars from gravity and topography. Journal of Geophysical Research: Planets, 109(8). https://doi.org/10.1029/2004JE002262

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free