Skip to content
Journal article

Culture pH affects exopolysaccharide production in submerged mycelial culture of Ganoderma lucidum.

Kim H, Park M, Yun J ...see all

Applied biochemistry and biotechnology, vol. 134, issue 3 (2006) pp. 249-262

  • 13

    Readers

    Mendeley users who have this article in their library.
  • 26

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

In submerged culture of Ganoderma lucidum, the pH optimum for cell growth has been shown to be lower than that for exopolysaccharides (EPS) formation. Therefore, in the present study, a two-stage pH-control strategy was employed to maximize the productions of mycelial biomass and EPS. When compared, a batch culture without pH control had a maximum concentration of EPS and endopolysaccharides, which was much lower than those with pH control. Maximum mycelial growth (12.5 g/L) and EPS production (4.7 g/L) were achieved by shifting the controlled pH from 3.0 to 6.0 after day 4. The contrast between the controlled-pH process and uncontrolled pH was marked. By using various two-stage culture processes, it was also observed that culture pH has a significant affect on the yield of product, mycelial morphology, chemical composition, and molecular weight of EPS. A detailed observation of mycelial morphology revealed that the productive morphological form for EPS production was a dispersed pellet (controlled pH shifting from 3.0 to 6.0) rather than a compact pellet with a dense core area (controlled pH 4.5) or a feather-like pellet (controlled pH shifting from 6.0 to 3.0). Three different polysaccharides were obtained from each pH conditions, and their molecular weights and chemical compositions were significantly different.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

  • Hyun Mi Kim

  • Moon Ki Park

  • Jong Won Yun

Cite this document

Choose a citation style from the tabs below