Dangerous good transportation by road: From risk analysis to emergency planning

  • Fabiano B
  • Currò F
  • Reverberi A
 et al. 
  • 44


    Mendeley users who have this article in their library.
  • 68


    Citations of this article.


Despite the relative recent move towards inherent safe materials, the relentless drive of consumerism requires increased quantities of dangerous goods to be manufactured, transported, stored and used year on year. The safety and effectiveness of road transport systems is to be considered a strategic goal in particular in those countries, like Italy, in which 80% of goods are transported by this means. In this paper, we face the risk from dangerous good transport by presenting a site-oriented framework for risk assessment and developing a theoretical approach for emergency planning and optimisation. In the first step, we collected field data on a pilot highway and developed a database useful to allow a realistic evaluation of the accident frequency on a given route, by means of multivariate statistical analysis. To this end, we considered both inherent factors (such as tunnels, bend radii, height gradient, slope etc), meteorological factors, and traffic factors (traffic frequency of tank truck, dangerous good truck etc.) suitable to modify the standard national accident frequency. By applying the results to a pilot area, referring to flammable and explosive scenarios, we performed a risk assessment sensitive to route features and population exposed. The results show that the risk associated to the transport of hazardous materials, in some highway stretches, can be at the boundary of the acceptability level of risk set down by the well known F/N curves established in the Netherlands. On this basis, in the subsequent step, we developed a theoretical approach, based on the graph theory, to plan optimal emergency actions. The effectiveness of an emergency planning can normally be evaluated in term of system quickness and reliability. As a case study, we applied the developed approach to identify optimal consistency and localisation in the pilot area of 'prompt action vehicles', properly equipped, quick to move and ready for every eventuality. Applying this method results in an unambiguous and consistent selection criterion that allows reduction of intervention time, in connection with technical and economic optimisation of emergency equipment. © 2005 Elsevier Ltd. All rights resered.

Author-supplied keywords

  • Accident frequency
  • Emergency
  • Hazardous materials
  • Transportation

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • B. Fabiano

  • F. Currò

  • A. P. Reverberi

  • R. Pastorino

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free