Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections

  • Carter G
  • Chakravorty A
  • Nguyen T
 et al. 
  • 88

    Readers

    Mendeley users who have this article in their library.
  • 60

    Citations

    Citations of this article.

Abstract

Clostridium difficile is a leading cause of antibiotic-associated diarrhea, a significant animal pathogen, and a world- wide public health burden. Most disease-causing strains secrete two exotoxins, TcdA and TcdB, which are considered to be the primary virulence factors. Understanding the role that these toxins play in disease is essential for the rational design of urgently needed new therapeutics. However, their relative contributions to disease remain contentious. Using three different animal models, we show that TcdA? TcdB? mutants are attenuated in virulence in comparison to the wild-type (TcdA? TcdB?) strain, whereas TcdA? TcdB? mutants are fully virulent.Wealso show for the first time that TcdB alone is associated with both severe localized intestinal damage and systemic organ damage, suggesting that this toxin might be responsible for the onset of multiple organ dysfunction syndrome (MODS), a poorly characterized but often fatal complication of C. difficile infection (CDI). Finally, we show that TcdB is the primary factor responsible for inducing the in vivo host innate immune and inflammatory responses. Surprisingly, the animal infection model used was found to profoundly influence disease outcomes, a finding which has impor- tant ramifications for the validation of new therapeutics and future disease pathogenesis studies. Overall, our results show un- equivocally that TcdB is the major virulence factor of C. difficile and provide new insights into the host response to C. difficile during infection. The results also highlight the critical nature of using appropriate and, when possible, multiple animal infection models when studying bacterial virulence mechanisms.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free