Deroughening of domain wall pairs by dipolar repulsion

40Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.
Get full text

Abstract

As a magnetic domain wall propagates under small fields through a random potential, it roughens as a result of weak collective pinning, known as creep. Using Kerr microscopy, we report experimental evidence of a surprising deroughening of wall pairs in the creep regime, in a 0.5 nm thick Co layer with perpendicular anisotropy. A bound state is found in cases where two rough domains nucleated far away from one another and first growing under the action of a magnetic field eventually do not merge. The two domains remain separated by a strip of unreversed magnetization, characterized by flat edges and stabilized by dipolar fields. A creep theory that includes dipolar interactions between domains successfully accounts for (i)the domain wall deroughening as the width of the strip decreases and (ii)the quasistatic and dynamic field dependence of the strip width s. © 2005 The American Physical Society.

Cite

CITATION STYLE

APA

Bauer, M., Mougin, A., Jamet, J. P., Repain, V., Ferré, J., Stamps, R. L., … Chappert, C. (2005). Deroughening of domain wall pairs by dipolar repulsion. Physical Review Letters, 94(20). https://doi.org/10.1103/PhysRevLett.94.207211

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free