Skip to content
Journal article

Development of SRAP, SNP and Multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L.

Rahman M, McVetty P, Li G ...see all

Theoretical and Applied Genetics, vol. 115, issue 8 (2007) pp. 1101-1107

  • 32

    Readers

    Mendeley users who have this article in their library.
  • Citations

    Citations of this article.
  • Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

Seed coat color inheritance in B. rapa was studied in F(1), F(2), F(3), and BC(1) progenies from a cross of a Canadian brown-seeded variety 'SPAN' and a Bangladeshi yellow sarson variety 'BARI-6'. A pollen effect was found when the yellow sarson line was used as the maternal parent. Seed coat color segregated into brown, yellow-brown and bright yellow classes. Segregation was under digenic control where the brown or yellow-brown color was dominant over bright yellow seed coat color. A sequence related amplified polymorphism (SRAP) marker linked closely to a major seed coat color gene (Br1/br1) was developed. This dominant SRAP molecular marker was successfully converted into single nucleotide polymorphism (SNP) markers and sequence characterized amplification region (SCAR) markers after the extended flanking sequence of the SRAP was obtained with chromosome walking. In total, 24 SNPs were identified with more than 2-kb sequence. A 12-bp deletion allowed the development of a SCAR marker linked closely to the Br1 gene. Using the five-fluorescence dye set supplied by ABI, four labeled M13 primers were integrated with different SCAR primers to increase the throughput of SCAR marker detection. Using multiplexed SCAR markers targeting insertions and deletions in a genome shows great potential for marker assisted selection in plant breeding.

Find this document

Get full text

Authors

  • Mukhlesur Rahman

  • Peter B E McVetty

  • Genyi Li

Cite this document

Choose a citation style from the tabs below