On different facets of regularization theory

  • Chen Z
  • Haykin S
  • 109


    Mendeley users who have this article in their library.
  • 79


    Citations of this article.


This review provides a comprehensive understanding of regularization theory from different perspectives, emphasizing smoothness and simplicity principles. Using the tools of operator theory and Fourier analysis, it is shown that the solution of the classical Tikhonov regularization problem can be derived from the regularized functional defined by a linear differential (integral) operator in the spatial (Fourier) domain. State-of-the-art research relevant to the regularization theory is reviewed, covering Occam's razor, minimum length description, Bayesian theory, pruning algorithms, informational (entropy) theory, statistical learning theory, and equivalent regularization. The universal principle of regularization in terms of Kolmogorov complexity is discussed. Finally, some prospective studies on regularization theory and beyond are suggested.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free