Diffusion of hydrogen in bcc tungsten studied with first principle calculations

  • Heinola K
  • Ahlgren T
  • 60

    Readers

    Mendeley users who have this article in their library.
  • 76

    Citations

    Citations of this article.

Abstract

First principle calculations were used to study the hydrogen migration properties in bulk bcc tungsten. Hydrogen has low solubility in tungsten and occupies the tetrahedral interstitial site with an energy difference of 0.38 eV compared to the octahedral interstitial site. The hydrogen diffusion coefficient was evaluated using the harmonic transition state theory and was found to agree with the experimental results at temperatures above 1500 K. The height of the migration barrier between two adjacent tetrahedral sites was found to be 0.21 eV, which is lower than the value 0.39 eV obtained for the migration barrier from degassing measurements in the temperature range between 1100 and 2400 K. The tunneling correction to the diffusion rate provides much better agreement with the experimental result at 29 K than the extrapolated experimental D from high temperature measurements.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free