Direct heteroepitaxy of vertical inas nanowires on si substrates for broad band photovoltaics and photodetection

  • Wei W
  • Bao X
  • Soci C
 et al. 
  • 151


    Mendeley users who have this article in their library.
  • 217


    Citations of this article.


Catalyst-free, direct heteroepitaxial growth of vertical InAs nanowires on Si(111) substrates was accomplished over a large area by metal-organic chemical vapor deposition. Nanowires showed very uniform diameters and a zinc blende crystal structure. The heterojunctions formed at the interface between the n-type InAs nanowires and the p-type Si substrate were exploited to fabricate vertical array photodiode devices which showed an excellent rectification ratio and low reverse leakage current. Temperature-dependent current transport across the heterojunctions was studied theoretically and experimentally in the dark and under AM 1.5 illumination. When operated in photovoltaic mode, the open-circuit voltage was found to increase linearly with decreasing temperature while the energy conversion efficiency changed nonmonotonically with a maximum of 2.5% at 110 K. Modeling of the nanowire/substrate heterojunctions showed good agreement with the experimental observations, and allowed determining the conduction band offset between the InAs nanowires and Si to be 0.10-0.15 eV. The external quantum efficiency and photoresponsivity profiles of the device showed a broad spectral response from the visible to the infrared region, indicating potential applications as a broad band photovoltaic cell or a visible-infrared dual-band photodetector.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free