Direct-potential-fit analyses yield improved empirical potentials for the ground X Σ g + 1 state of Be2

  • Meshkov V
  • Stolyarov A
  • Heaven M
 et al. 
  • 14

    Readers

    Mendeley users who have this article in their library.
  • 17

    Citations

    Citations of this article.

Abstract

We have performed new direct-potential-fit (DPF) analyses of the rotationally resolved A (1)Π(u)(ν'=2,3;J' =1,2)→X(1)Σ(+)(g) (ν" ∈[0,11];J" ∈[0,3]) stimulated emission pumping spectra of Be2 [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] using two quite different analytical potential energy functions that incorporate the correct theoretically known long-range behaviour in different ways. These functions are: the damped Morse/long-range potential [R. J. Le Roy, C. C. Haugen, J. Tao, and H. Li, Mol. Phys. 109, 435 (2011)], and the Chebyshev polynomial expansion potential [L. Busevica, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, V. V. Meshkov, E. A. Pazyuk, and A. V. Stolyarov, J. Chem. Phys. 134, 104307 (2011)]. In contrast with the expanded Morse oscillator potential determined in the original DPF analysis of Merritt et al. [Science 324, 1548 (2009)], both of these functions unambiguously support the existence of the v″ = 11 last vibrational levels which is bound by only ∼0.5 cm(-1), and they give equivalent, essentially exact predictions for this level when using the original data set which ended at v″ = 10. These empirical potentials predict an equilibrium distance of re = 2.445(5) Å and a well depth of D(e) = 934.9(0.4) cm(-1), values which agree (within the uncertainties) with the best ab initio estimates of 2.444(10) Å and 935(10) cm(-1), respectively [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)].

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Error loading document authors.

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free