Dissipative solitons for mode-locked fiber lasers

  • Grelu P
  • Chouli S
  • Soto-Crespo J
 et al. 
  • 25


    Mendeley users who have this article in their library.
  • 1


    Citations of this article.


Dissipative solitons are localized formations of an electromagnetic field that are balanced through an energy exchange with the environment in presence of nonlinearity, dispersion and/or diffraction. Their growing use in the area of passively mode-locked lasers is remarkable: the concept of a dissipative soliton provides an excellent framework for understanding complex pulse dynamics and stimulates innovative cavity designs. Reciprocally, the field of mode-locked lasers serves as an ideal playground for testing the concept of dissipative solitons and revealing their unusual dynamics. This Review provides basic definitions of dissipative solitons, summarizes their implications for the design of high-energy mode-locked fibre laser cavities, highlights striking emerging dynamics such as dissipative soliton molecules, pulsations, explosions and rain, and finally provides an outlook for dissipative light bullets.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Ph Grelu

  • S. Chouli

  • J. M. Soto-Crespo

  • W. Chang

  • A. Ankiewicz

  • N. Akhmediev

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free