How does distortion correction correlate with anisotropic indices? A diffusion tensor imaging study

  • Kim D
  • Park H
  • Kang K
 et al. 
  • 43


    Mendeley users who have this article in their library.
  • 23


    Citations of this article.


Purpose: The purpose of this study was to determine a suitable registration algorithm for diffusion tensor imaging (DTI) using conventional preprocessing tools [statistical parametric mapping (SPM) and automated image registration (AIR)] and to investigate how anisotropic indices for clinical assessments are affected by these distortion corrections. Materials and Methods: Brain DTI data from 15 normal healthy volunteers were used to evaluate four spatial registration schemes within subjects to correct image distortions: noncorrection, SPM-based affine registration, AIR-based affine registration and AIR-based nonlinear polynomial warping. The performance of each distortion correction was assessed using: (a) quantitative parameters: tensor-fitting error (Ef), mean dispersion index (MDI), mean fractional anisotropy (MFA) and mean variance (MV) within 11 regions of interest (ROI) defined from homogeneous fiber bundles; and (b) fiber tractography through the uncinate fasciculus and the corpus callosum. Fractional anisotropy (FA) and mean diffusivity (MD) were calculated to demonstrate the effects of distortion correction. Repeated-measures analysis of variance was used to investigate differences among the four registration paradigms. Results: AIR-based nonlinear registration showed the best performance for reducing image distortions with respect to smaller Ef(P

Author-supplied keywords

  • Diffusion tensor imaging
  • Distortion correction
  • Evaluation
  • Image registration

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free