Dixon_etal_Tectonics_2000.pdf

  • Dixon T
  • Miller M
  • Farina F
  • et al.
N/ACitations
Citations of this article
1Readers
Mendeley users who have this article in their library.

Abstract

Global Positioning System (GPS) data from five sites on the stable interior of the Sierra Nevada block are inverted to describe its angular velocity relative to stable North America. The velocity data for the five sites fit the rigid block model with rms misfits of 0.3 mm/yr (north) and 0.8 mm/yr (east), smaller than independently estimated data uncertainty, indicating that the rigid block model is appropriate. The new Euler vector, 17.0°N, 137.3°W, rotation rate 0.28 degrees per million years, predicts that the block is translating to the northwest, nearly parallel to the plate motion direction, at 13–14 mm/yr, faster than previous estimates. Using the predicted Sierra Nevada block velocity as a kinematic boundary condition and GPS, VLBI and other data from the interior and margins of the Basin and Range, we estimate the velocities of some major boundary zone faults. For a transect approximately perpendicular to plate motion through northern Owens Valley, the eastern California shear zone (western boundary of the Basin and Range province) accommodates 14±1 mm/yr of right‐lateral shear primarily on two faults, the Owens Valley‐White Mountain (3±2 mm/yr) and Fish Lake Valley (8±2 mm/yr) fault zones, based on a viscoelastic coupling model that accounts for the effects of the 1872 Owens Valley earthquake and the rheology of the lower crust. Together these two faults, separated by less than 50 km on this transect, define a region of high surface velocity gradient on the eastern boundary of the Sierra Nevada block. The Wasatch Fault zone accommodates less than 3±1 mm/yr of east‐west extension on the eastern boundary of the Basin and Range province. Remaining deformation within the Basin and Range interior is also probably less than 3 mm/yr.

Cite

CITATION STYLE

APA

Dixon, T., Miller, M., Farina, F., Wang, H., & Johnson, D. (2000). Dixon_etal_Tectonics_2000.pdf. Journal of Geophysical Research, 19(1), 1–24.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free