Journal article

The Dynamic Analysis of an Energy Storage Flywheel System With Hybrid Bearing Support

Wang H, Jiang S, Shen Z ...see all

Journal of Vibration and Acoustics, vol. 131, issue 5 (2009) p. 051006

  • 10


    Mendeley users who have this article in their library.
  • 7


    Citations of this article.
Sign in to save reference


Active magnetic bearings and superconducting magnetic bearings were used on a high- speed flywheel energy storage system; however, their wide industrial acceptance is still a challenging task because of the complexity in designing the elaborate active control system and the difficulty in satisfying the cryogenic condition. A hybrid bearing consist- ing of a permanent magnetic bearing and a pivot jewel bearing is used as the support for the rotor of the energy storage flywheel system. It is simple and has a long working life without requiring maintenance or an active control system. The two squeeze film dampers are employed in the flywheel system to suppress the lateral vibration, to enhance the rotor leaning stability, and to reduce the transmitted forces. The dynamic equation of the flywheel with four degrees of complex freedom is built by means of the Lagrange equa- tion. In order to improve accuracy, the finite element method is utilized to solve the Reynolds equation for the dynamic characteristics of the squeeze film damper. When the calculated unbalance responses are compared with the test responses, they indicate that the dynamics model is correct. Finally, the effect of the squeeze film gap on the trans- mitted force is analyzed, and the appropriate gap should be selected to cut the energy loss and to control vibration of the flywheel system.

Author-supplied keywords

  • dampers
  • finite element method
  • flywheel energy storage system
  • hybrid bearing
  • rotor dynamics
  • squeeze film
  • transmitted force

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • Hongchang Wang

  • Shuyun Jiang

  • Zupei Shen

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free