Dynamic heterogeneity of exercising muscle blood flow and O2 utilization

  • Koga S
  • Rossiter H
  • Heinonen I
 et al. 
  • 66

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Resolving the bases for different physiological functioning or exercise performance within a population is dependent on our understanding of control mechanisms. For example, when most young healthy individuals run or cycle at moderate intensities, oxygen uptake (V˙O2) kinetics are rapid and the amplitude of the V˙O2 response is not constrained by O2 delivery. For this to occur, muscle O2 delivery (i.e., blood flow × arterial O2 concentration) must be coordinated superbly with muscle O2 requirements (V˙O2), the efficacy of which may differ among muscles and distinct fiber types. When the O2 transport system succumbs to the predations of aging or disease (emphysema, heart failure, and type 2 diabetes), muscle O2 delivery and O2 delivery-V˙O2 matching and, therefore, muscle contractile function become impaired. This forces greater influence of the upstream O2 transport pathway on muscle aerobic energy production, and the O2 delivery-V˙O2 relationship(s) assumes increased importance. This review is the first of its kind to bring a broad range of available techniques, mostly state of the art, including computer modeling, radiolabeled microspheres, positron emission tomography, magnetic resonance imaging, near-infrared spectroscopy, and phosphorescence quenching to resolve the O2 delivery-V˙O2 relationships and inherent heterogeneities at the whole body, interorgan, muscular, intramuscular, and microvascular/myocyte levels. Emphasis is placed on the following: 1) intact humans and animals as these provide the platform essential for framing and interpreting subsequent investigations, 2) contemporary findings using novel technological approaches to elucidate O2 delivery-V˙O2 heterogeneities in humans, and 3) future directions for investigating how normal physiological responses can be explained by O2 delivery-V˙O2 heterogeneities and the impact of aging/disease on these processes.

Author-supplied keywords

  • Exercise performance
  • health and disease
  • muscle fiber types

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Shunsaku Koga

  • Harry B. Rossiter

  • Ilkka Heinonen

  • Timothy I. Musch

  • David C. Poole

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free