Journal article

Dynamical complexity of work-hardening: A large-scale molecular dynamics simulation

Buehler M, Hartmaier A, Duchaineau M, Abraham F, Gao H ...see all

Acta Mechanica Sinica/Lixue Xuebao, vol. 21, issue 2 (2005) pp. 103-111

  • 35

    Readers

    Mendeley users who have this article in their library.
  • 20

    Citations

    Citations of this article.
Sign in to save reference

Abstract

We analyze a large-scale molecular dynamics simulation of work hardening in a model system of a ductile solid. With tensile loading, we observe emission of thousands of dislocations from two sharp cracks. The dislocations interact in a complex way, revealing three fundamental mechanisms of work-hardening in this ductile material. These are (1) dislocation cutting processes, jog formation and generation of trails of point defects; (2) activation of secondary slip systems by Frank-Read and cross-slip mechanisms; and (3) formation of sessile dislocations such as Lomer-Cottrell locks. We report the discovery of a new class of point defects referred to as trail of partial point defects, which could play an important role in situations when partial dislocations dominate plasticity. Another important result of the present work is the rediscovery of the Fleischer-mechanism of cross-slip of partial dislocations that was theoretically proposed more than 50 years ago, and is now, for the first time, confirmed by atomistic simulation. On the typical time scale of molecular dynamics simulations, the dislocations self-organize into a complex sessile defect topology. Our analysis illustrates numerous mechanisms formerly only conjectured in textbooks and observed indirectly in experiments. It is the first time that such a rich set of fundamental phenomena have been revealed in a single computer simulation, and its dynamical evolution has been studied. The present study exemplifies the simulation and analysis of the complex nonlinear dynamics of a many-particle system during failure using ultra-large scale computing.

Author-supplied keywords

  • Cross-slip
  • Dislocation junction
  • Large-scale atomistic simulation
  • Work-hardening

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free