Dynamics of magnon fluid in Dzyaloshinskii-Moriya magnet and its manifestation in magnon-Skyrmion scattering

  • Oh Y
  • Lee H
  • Park J
 et al. 
  • 30


    Mendeley users who have this article in their library.
  • 10


    Citations of this article.


We construct Holstein-Primakoff Hamiltonian for magnons in arbitrary slowly varying spin background, for a microscopic spin Hamiltonian consisting of ferromagnetic spin exchange,Dzyaloshinskii-Moriya exchange, and the Zeeman term. The Gross-Pitaevskii-type equation for magnon dynamics contains several background gauge fields pertaining to local spin chirality, inhomogeneous potential, and anomalous scattering that violates the boson number conservation. Non-trivial corrections to previous formulas derived in the literature are given. Subsequent mapping to hydrodynamic fields yields the continuity equation and the Euler equation of the magnon fluid dynamics. Magnon wave scattering off a localized Skyrmion is examined numerically based on our Gross-Pitaevskii formulation. Dependence of the effective flux experienced by the impinging magnon on the Skyrmion radius is pointed out, and compared with analysis of the same problem using the Landau-Lifshitz-Gilbert equation.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free