Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study

  • Harkema S
  • Gerasimenko Y
  • Hodes J
 et al. 
  • 502

    Readers

    Mendeley users who have this article in their library.
  • 336

    Citations

    Citations of this article.

Abstract

Repeated periods of stimulation of the spinal cord and training increased the ability to control movement in animal models of spinal cord injury. We hypothesised that tonic epidural spinal cord stimulation can modulate spinal circuitry in human beings into a physiological state that enables sensory input from standing and stepping movements to serve as a source of neural control to undertake these tasks. A 23-year-old man who had paraplegia from a C7-T1 subluxation as a result of a motor vehicle accident in July 2006, presented with complete loss of clinically detectable voluntary motor function and partial preservation of sensation below the T1 cord segment. After 170 locomotor training sessions over 26 months, a 16-electrode array was surgically placed on the dura (L1-S1 cord segments) in December 2009, to allow for chronic electrical stimulation. Spinal cord stimulation was done during sessions that lasted up to 250 min. We did 29 experiments and tested several stimulation combinations and parameters with the aim of the patient achieving standing and stepping. Epidural stimulation enabled the man to achieve full weight-bearing standing with assistance provided only for balance for 4·25 min. The patient achieved this standing during stimulation using parameters identified as specific for standing while providing bilateral load-bearing proprioceptive input. We also noted locomotor-like patterns when stimulation parameters were optimised for stepping. Additionally, 7 months after implantation, the patient recovered supraspinal control of some leg movements, but only during epidural stimulation. Task-specific training with epidural stimulation might reactivate previously silent spared neural circuits or promote plasticity. These interventions could be a viable clinical approach for functional recovery after severe paralysis. National Institutes of Health and Christopher and Dana Reeve Foundation. © 2011 Elsevier Ltd.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free