Skip to content
Journal article

Effect of humidity on nitric acid uptake to mineral dust aerosol particles

Vlasenko A, Sjogren S, Weingartner E, Stemmler K, Gaggeler H, Ammann M ...see all

Atmospheric Chemistry and Physics, vol. 6, issue 8 (2006) pp. 2147-2160

  • 21


    Mendeley users who have this article in their library.
  • 68


    Citations of this article.
  • N/A


    ScienceDirect users who have downloaded this article.
Sign in to save reference


This study presents the first laboratory observation of HNO3 uptake by airborne mineral dust particles. The model aerosols were generated by dry dispersion of Arizona Test Dust (ATD), SiO2, and by nebulizing a saturated solution of calcium carbonate. The uptake of N-13-labeled gaseous nitric acid was observed in a flow reactor on the 0.2-2 s reaction time scale at room temperature and atmospheric pressure. The amount of nitric acid appearing in the aerosol phase at the end of the flow tube was found to be a linear function of the aerosol surface area. SiO2 particles did not show any significant uptake, while the CaCO3 aerosol was found to be more reactive than ATD. Due to the smaller uncertainty associated with the reactive surface area in the case of suspended particles as compared to bulk powder samples, we believe that we provide an improved estimate of the rate of uptake of HNO3 to mineral dust. The fact that the rate of uptake was smaller at a concentration of 10(12) than at 10(11) was indicative of a complex uptake mechanism. The uptake coefficient averaged over the first 2s of reaction time at a concentration of 10(12) molecules cm(-3) was found to increase with increasing relative humidity, from 0.022 +/- 0.007 at 12% RH to 0.113 +/- 0.017 at 73% RH , which was attributed to an increasing degree of solvation of the more basic minerals. The extended processing of the dust by higher concentrations of HNO3 at 85% RH led to a water soluble coating on the particles and enhanced their hygroscopicity.

Author-supplied keywords

  • Heterogeneous chemistry
  • atmospheric
  • dissolution
  • flow-tube
  • knudsen cell
  • laboratory systems
  • particles
  • saharan dust
  • surfaces
  • troposphere
  • water-adsorption

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • A Vlasenko

  • S Sjogren

  • E Weingartner

  • K Stemmler

  • H W Gaggeler

  • M. Ammann

Cite this document

Choose a citation style from the tabs below