Effects of blade design on ice accretion for horizontal axis wind turbines

37Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper presents a numerical study to predict ice loads on a wind turbine blade section at 80% of blade span. Air flow, droplet impingement and ice accretion simulations are conducted in FENSAP ICE. The effect of low and high liquid water content (LWC) conditions on blade thickness is presented. All NREL airfoil families used for HAWTs are examined to study blade design's effect on ice accretion. Ice shapes are numerically predicted at different atmospheric temperatures and LWC conditions. The degradation in aerodynamic characteristics due to ice formation is predicted. The numerical predictions suggest a 10%–65% reduction in lift coefficient due to ice accretion, which is highly dependent on the accreted ice shape.

Cite

CITATION STYLE

APA

Ibrahim, G. M., Pope, K., & Muzychka, Y. S. (2018). Effects of blade design on ice accretion for horizontal axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 173, 39–52. https://doi.org/10.1016/j.jweia.2017.11.024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free