Effects of oxygen coverage on rates and selectivity of propane-CO2reactions on molybdenum carbide

  • Sullivan M
  • Bhan A
  • 6


    Mendeley users who have this article in their library.
  • 1


    Citations of this article.


Mo2C catalyzes propane dehydrogenation and hydrogenolysis at 823 K; carbon selectivity can be tuned to >95% propylene via dehydrogenation in absence of H2, >95% CH4via hydrogenolysis with H2co-feed, or >80% CO via reforming pathways with H2and CO2co-feed. The changes in selectivity are mediated by an evolution in the coverage of oxidized (O∗) and carbidic (∗) surface sites which results in an evolution of O∗[sbnd]O∗, O∗[sbnd]∗, and∗[sbnd]∗site pairs that catalyze propane dehydrogenation. The fraction of O∗in relation to∗was assessed from measured CO2/CO ratios because reverse water gas shift equilibrium exists under H2/CO2co-feed steady state reaction conditions. Kinetic models based on the two-site dehydrogenation mechanism could be used to quantitatively describe measured rates of propane dehydrogenation at steady state with or without H2and/or CO2co-feed and the transient evolution in dehydrogenation rates upon removing H2or CO2in the influent stream to note that O∗[sbnd]∗site pairs exhibit the highest rate per gram. This model also provides a rationale for O∗inhibition of H-activated hydrogenolysis pathways and for promotion of oxidative dehydrogenation rates with the introduction of hydrogen into CO2-propane influent streams. This study extends concepts developed for examining the catalytic effects of O∗coverage on oxidative light alkane conversion from transition metal catalysts to also include carbidic formulations.

Author-supplied keywords

  • CO2
  • C[sbnd]H bond activation
  • Oxidative dehydrogenation
  • Oxophilic metal carbides
  • Propane

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free