Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence

  • Akeju O
  • Westover M
  • Pavone K
 et al. 
  • 57

    Readers

    Mendeley users who have this article in their library.
  • 50

    Citations

    Citations of this article.

Abstract

BACKGROUND: The neural mechanisms of anesthetic vapors have not been studied in depth. However, modeling and experimental studies on the intravenous anesthetic propofol indicate that potentiation of γ-aminobutyric acid receptors leads to a state of thalamocortical synchrony, observed as coherent frontal alpha oscillations, associated with unconsciousness. Sevoflurane, an ether derivative, also potentiates γ-aminobutyric acid receptors. However, in humans, sevoflurane-induced coherent frontal alpha oscillations have not been well detailed.

METHODS: To study the electroencephalogram dynamics induced by sevoflurane, the authors identified age- and sex-matched patients in which sevoflurane (n = 30) or propofol (n = 30) was used as the sole agent for maintenance of general anesthesia during routine surgery. The authors compared the electroencephalogram signatures of sevoflurane with that of propofol using time-varying spectral and coherence methods.

RESULTS: Sevoflurane general anesthesia is characterized by alpha oscillations with maximum power and coherence at approximately 10 Hz, (mean ± SD; peak power, 4.3 ± 3.5 dB; peak coherence, 0.73 ± 0.1). These alpha oscillations are similar to those observed during propofol general anesthesia, which also has maximum power and coherence at approximately 10 Hz (peak power, 2.1 ± 4.3 dB; peak coherence, 0.71 ± 0.1). However, sevoflurane also exhibited a distinct theta coherence signature (peak frequency, 4.9 ± 0.6 Hz; peak coherence, 0.58 ± 0.1). Slow oscillations were observed in both cases, with no significant difference in power or coherence.

CONCLUSIONS: The study results indicate that sevoflurane, like propofol, induces coherent frontal alpha oscillations and slow oscillations in humans to sustain the anesthesia-induced unconscious state. These results suggest a shared molecular and systems-level mechanism for the unconscious state induced by these drugs.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Oluwaseun Akeju

  • M. Brandon Westover

  • Kara J. Pavone

  • Aaron L. Sampson

  • Katharine E. Hartnack

  • Emery N. Brown

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free