Effects of Surface Area, Free Volume, and Heat of Adsorption on Hydrogen Uptake in Metal Organic Frameworks

  • Frost H
  • Duren T
  • Snurr R
  • 3


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


Grand canonical Monte Carlo simulations were performed to predict adsorption isotherms for hydrogen in a series of 10 isoreticular metalorganic frameworks (IRMOFs). The results show acceptable agreement with the limited experimental results from the literature. The effects of surface area, free volume, and heat of adsorption on hydrogen uptake were investigated by performing simulations over a wide range of pressures on this set of materials, which all have the same framework topology and surface chemistry but varying pore sizes. The results reveal the existence of three adsorption regimes: at low pressure (loading), hydrogen uptake correlates with the heat of adsorption; at intermediate pressure, uptake correlates with the surface area; and at the highest pressures, uptake correlates with the free volume. The accessible surface area and free volume, calculated from the crystal structures, were also used to estimate the potential of these materials to meet gravimetric and volumetric targets for hydrogen storage in IRMOFs.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Houston Frost

  • Tina Duren

  • Randall Q Snurr

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free