An Efficient Scheme for Authenticating Public Keys in Sensor Networks

  • Du W
  • Wang R
  • Ning P
  • 38

    Readers

    Mendeley users who have this article in their library.
  • 127

    Citations

    Citations of this article.

Abstract

With the advance of technology, Public Key Cryptography (PKC) will sooner or later be widely used in wireless sensor networks. Recently, it has been shown that the performance of some public-key algorithms, such as Elliptic Curve Cryptography (ECC), is already close to being practical on sensor nodes. However, the energy consumption of PKC is still expensive, especially compared to symmetric-key algorithms. To maximize the lifetime of batteries, we should minimize the use of PKC whenever possible in sensor networks.This paper investigates how to replace one of the important PKC operations--the public key authentication--with symmetric key operations that are much more efficient. Public key authentication is to verify the authenticity of another party's public key to make sure that the public key is really owned by the person it is claimed to belong to. In PKC, this operation involves an expensive signature verification on a certificate. We propose an efficient alternative that uses one-way hash function only. Our scheme uses all sensor's public keys to construct a forest of Merkle trees of different heights. By optimally selecting the height of each tree, we can minimize the computation and communication costs. The performance of our scheme is evaluated in the paper.

Author-supplied keywords

  • deployment knowl-
  • merkle tree
  • public key
  • wireless sensor networks

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Wenliang Du

  • Ronghua Wang

  • Peng Ning

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free