Efficient tracking and ego-motion recovery using gait analysis

  • Zhou H
  • Wallace A
  • Green P
  • 20


    Mendeley users who have this article in their library.
  • 15


    Citations of this article.


We present a strategy based on human gait to achieve efficient tracking, recovery of ego-motion and 3-D reconstruction from an image sequence acquired by a single camera attached to a pedestrian. In the first phase, the parameters of the human gait are established by a classical frame-by-frame analysis, using an generalized least squares (GLS) technique. The gait model is non-linear, represented by a truncated Fourier series. In the second phase, this gait model is employed within a "predict-correct" framework using a maximum a posteriori, expectation-maximization (MAP-EM) strategy to obtain robust estimates of the ego-motion and scene structure, while continuously refining the gait model. Experiments on synthetic and real image sequences show that the use of the gait model results in more efficient tracking. This is demonstrated by improved matching and retention of features, and a reduction in execution time, when processing video sequences. © 2009 Elsevier B.V. All rights reserved.

Author-supplied keywords

  • 3-D reconstruction
  • Efficiency
  • Ego-motion
  • Human gait
  • Tracking

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • Huiyu Zhou

  • Andrew M. Wallace

  • Patrick R. Green

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free