Endoderm convergence controls subduction of the myocardial precursors during heart-tube formation

28Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Coordination between the endoderm and adjacent cardiac mesoderm is crucial for heart development. We previously showed that myocardial migration is promoted by convergent movement of the endoderm, which itself is controlled by the S1pr2/Gα13 signaling pathway, but it remains unclear how the movements of the two tissues is coordinated. Here, we image live and fixed embryos to follow these movements, revealing previously unappreciated details of strikingly complex and dynamic associations between the endoderm and myocardial precursors. We found that during segmentation the endoderm underwent three distinct phases of movement relative to the midline: rapid convergence, little convergence and slight expansion. During these periods, themyocardial cells exhibited different stage-dependent migratorymodes: co-migration with the endoderm, movement from the dorsal to the ventral side of the endoderm (subduction) and migration independent of endoderm convergence. We also found that defects in S1pr2/Gα13-mediated endodermal convergence affected all three modes of myocardial cell migration, probably due to the disruption of fibronectin assembly around the myocardial cells and consequent disorganization of the myocardial epithelium. Moreover, we found that additional cell types within the anterior lateral platemesoderm (ALPM) also underwent subduction, and that this movement likewise depended on endoderm convergence. Our study delineates for the first time the details of the intricate interplay between the endoderm and ALPM during embryogenesis, highlighting why endoderm movement is essential for heart development, and thus potential underpinnings of congenital heart disease.

Cite

CITATION STYLE

APA

Ye, D., Xie, H., Hu, B., & Lin, F. (2015). Endoderm convergence controls subduction of the myocardial precursors during heart-tube formation. Development (Cambridge), 142(17), 2928–2940. https://doi.org/10.1242/dev.113944

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free