Journal article

Entity Based Sentiment Analysis on Twitter

Batra S, Rao D ...see all

Science (2010) pp. 1-12

  • 70


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.
Sign in to save reference


The aim of ourwork is to use the Twitter corpus to ascertain the opinion about entities that matter and enable consumption of these opinions in a user friendly way. We focus on classifying the opinions as either positive, negative or neutral. Since there arent large enough datasets of labeled tweets, limiting the sentiment categories to the above three enables us to leverage other similar but larger datasets for training custom sentiment language models. We begin by extracting entities from the Twitter dataset using the Stanford NER 8. URLs and username tags (person) are also treated as entities to augment the entities found by the NER. To learn a sentiment language model we use a corpus of 200,000 product reviews that have been labeled as positive or negative. Using this corpus the sentiment language model computes the prob- ability that a given unigram or bigram is being used in a positive context and the probability that its being used in a negative context. Using this sentiment language model we analyze all tweets associated with an entity and classify whether the overall opinion of that entity is positive or negative and by how much.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links


  • Siddharth Batra

  • Deepak Rao

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free