Epigenetics of autoimmune diseases

5Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Although strong genetic bases have been found by genome-wide association studies, no unique genetic mechanism underlying immune tolerance breakdown was identified in autoimmune diseases. The largely incomplete concordance rates of autoimmune diseases in monozygotic twins strongly support other complementary mechanisms involved in gene regulation ultimately causing overt autoimmunity, and it is becoming increasingly evident that epigenetic deregulation contributes to the emergence and/or the progression of disorders that include lupus, rheumatoid arthritis, systemic sclerosis, Sjögren’s syndrome, vasculitis, diabetes, and multiple sclerosis. A number of epigenetic modifications (DNA methylation, histone acetylation, deacetylation, and methylation, microRNA) have emerged as important contributing factors, and, in some cases, the changes correlate with increased disease activity. The view that epigenetic factors may be of key impact on the pathogenesis of autoimmune diseases is supported by observations that environmental triggers are involved in disease development, since age, infections, smoking, nutrition, and pollution have been suggested to have an effect on the epigenetic background. Importantly, because epigenetic defects, when compared to genetic defects, are more easily reversible with pharmacological intervention, epigenetic therapy promises to offer agents capable of controlling various autoimmune diseases.

Cite

CITATION STYLE

APA

Zouali, M. (2019). Epigenetics of autoimmune diseases. In The Autoimmune Diseases (pp. 429–466). Elsevier. https://doi.org/10.1016/B978-0-12-812102-3.00025-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free