Establishing epigenetic variation during genome reprogramming

  • Borges F
  • Martienssen R
  • 34

    Readers

    Mendeley users who have this article in their library.
  • 8

    Citations

    Citations of this article.

Abstract

Transgenerational reprogramming of DNA methylation is important for transposon silencing and epigenetic inheritance. A stochastic regulation of methylation states in the germline may lead to epigenetic variation and the formation of epialleles that contribute to phenotypic variation. In Arabidopsis thaliana inbred lines, the frequency of single base variation of DNA methylation is much higher than genetic mutation and, interestingly, variable epialleles are pre-methylated in the male germline. However, these same alleles are targeted for demethylation in the pollen vegetative nucleus, by a mechanism that seems to contribute to the accumulation of small RNAs that reinforce transcriptional gene silencing in the gametes. These observations are paving the way toward understanding the extent of epigenetic reprogramming in higher plants, and the mechanisms regulating the stability of acquired epigenetic states across generations.

Author-supplied keywords

  • Arabidopsis
  • DNA methylation
  • Epiallele
  • Germline
  • Small RNAs
  • Transposable elements

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free