Evaluating the Impact of Programming Language Features on the Performance of Parallel Applications on Cluster Architectures

  • Berlin K
  • Huan J
  • Jacob M
 et al. 
  • 13

    Readers

    Mendeley users who have this article in their library.
  • 8

    Citations

    Citations of this article.

Abstract

We evaluate the impact of programming language features on the performance of parallel applications on modern parallel architectures, particularly for the demanding case of sparse integer codes. We compare a number of programming languages (Pthreads, OpenMP, MPI, UPC) on both shared and distributed-memory architectures. We find that language features can make parallel programs easier to write, but cannot hide the underlying communication costs for the target parallel architecture. Powerful compiler analysis and optimization can help reduce software overhead, but features such as fine-grain remote accesses are inherently expensive on clusters. To avoid large reductions in performance, language features must avoid degrading the performance of local computations.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Konstantin Berlin

  • Jun Huan

  • Mary Jacob

  • Garima Kochhar

  • Jan Prins

  • Bill Pugh

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free