Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells

71Citations
Citations of this article
85Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Biofilms on biocathodes can catalyze the cathodic oxygen reduction and accordingly guarantee high cathode redox potentials. The present research assessed the use of biocathodes in full-sediment microbial fuel cells. Carbon felt-based biocathodes were evaluated in freshwater systems, and an extension of their application to brackish systems and/or stainless steel webs as base material was considered. Efficient biocathodes could be developed within days through inoculation with active microorganisms. Carbon felt was found most suited for the biocathodes in freshwater with increased performance at salinities around 80-250 mM. Maximum long-term performance reached 12.3 μW cm-2 cathode. The relative benefit of stainless steel seemed to increase with increasing salinity. A combination of stainless steel cathodes with biofilms could, however, also result in decreased electrical performance. In an efficiently catalyzing cathodic biofilm, an enrichment with an uncultured Proteobacterium-previously correlated with steel waste-was observed. © 2010 Springer-Verlag.

Cite

CITATION STYLE

APA

De Schamphelaire, L., Boeckx, P., & Verstraete, W. (2010). Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Applied Microbiology and Biotechnology, 87(5), 1675–1687. https://doi.org/10.1007/s00253-010-2645-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free