Evaluation of cloud thermodynamic phase parametrizations in the LMDZ GCM by using POLDER satellite data

  • Doutriaux-Boucher M
  • Quaas J
  • 12


    Mendeley users who have this article in their library.
  • 24


    Citations of this article.


Realistic simulations of clouds are of uppermost importance for climate modelling using general circulation models. Satellite data are well suited to evaluate model parametrizations. In this study we use the Laboratoire de Météorologie Dynamique general circulation model (LMDZ). We evaluate the current LMDZ cloud phase parametrization, in which the repartition of condensed cloud water between liquid and ice is a function of the local temperature. Three parameters are used to derive a relation between liquid cloud water content and temperature, two of which are not physically based. We use the POLDER-1 satellite data to infer more realistic parameters by establishing statistical relationships between cloud top thermodynamical phase and cloud top temperature, consistently in both satellite data and model results. We then perform a multitude of short model integrations and derive a best estimate for the lowest local temperature where liquid water can exist in a cloud (Tice = -32°C in our parametrization). The other parameter which describes the shape of the transition between ice and liquid water is also estimated. A longer simulation has then been performed with the new parameters, resulting in an improvement in the representation of the shortwave cloud radiative forcing.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • M. Doutriaux-Boucher

  • J. Quaas

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free