Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion

  • Rye K
  • Hime N
  • Barter P
  • 8


    Mendeley users who have this article in their library.
  • 78


    Citations of this article.


It is well established that cholesteryl ester transfer protein (CETP) changes the size of high density lipoproteins (HDL) during incubation in vitro. It has been suggested that HDL.CETP.HDL ternary complex formation is involved in these changes. The present results, which are consistent with CETP changing the size of spherical reconstituted HDL (rHDL) by a mechanism involving fusion, support the ternary complex hypothesis. When rHDL containing a core of cholesteryl esters and either three molecules of apolipoprotein (apo) A-I/particle, (A-I)rHDL, or six molecules of apoA-II/particle, (A-II)rHDL, were incubated individually with CETP, their respective diameters decreased from 9.4 to 7.8 nm and from 9.8 to 8.8 nm. The small (A-I)rHDL and (A-II)rHDL contained, respectively, two molecules of apoA-I/particle and four molecules of apoA-II/particle. As all of the rHDL lipids and apolipoproteins were quantitatively recovered at the end of the incubations, it was apparent that there was a 50% increase in the number of particles. This increase in the number of particles can be explained as follows: (i) sequential binding of two rHDL to CETP to generate a ternary complex, (ii) fusion of the rHDL in the ternary complex, and (iii) rearrangement of the fusion product into three small particles. Various spectroscopic techniques were used to show that the small rHDL were structurally distinct from the original rHDL. These results provide the first evidence that CETP mediates the fusion of spherical rHDL.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free