Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation

  • Jong C
  • Su Y
  • Bresler Y
  • 1

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Diffuse optical tomography (DOT) is a sensitive and relatively low cost imaging modality. However, the inverse problem of reconstructing optical parameters from scattered light measurements is highly nonlinear due to the nonlinear coupling between the optical coefficients and the photon flux in the diffusion equation. Even though nonlinear iterative methods have been commonly used, such iterative processes are computationally expensive especially for the three dimensional imaging scenario with massive number of detector elements. The main contribution of this paper is a novel non-iterative and exact inversion algorithm when the optical inhomogeneities are sparsely distributed. We show that the problem can be converted into simultaneous sparse representation problem with multiple measurement vectors from compressed sensing framework. The exact reconstruction formula is obtained using simultaneous orthogonal matching pursuit (S-OMP) and a simple two step approach without ever calculating the diffusion equation. Simulation results also confirm our theory. ©2008 IEEE.

Author-supplied keywords

  • Boolean functions; Diagnostic radiography; Electro
  • Compressed sensing; Diffuse optical tomography; D
  • Iterative methods

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • C.Y.a Jong

  • Y.L.a Su

  • Y.b Bresler

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free