Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi

  • Bellion M
  • Courbot M
  • Jacob C
 et al. 
  • 117

    Readers

    Mendeley users who have this article in their library.
  • 128

    Citations

    Citations of this article.

Abstract

This review focuses on recent evidence that identifies potential extracellular and cellular mechanisms that may be involved in the tolerance of ectomycorrhizal fungi to excess metals in their environment. It appears likely that mechanisms described in the nonmycorrhizal fungal species are used in the ectomycorrhizal fungi as well. These include mechanisms that reduce uptake of metals into the cytosol by extracellular chelation through extruded ligands and binding onto cell-wall components. Intracellular chelation of metals in the cytosol by a range of ligands (glutathione, metallothioneins), or increased efflux from the cytosol out of the cell or into sequestering compartments are also key mechanisms conferring tolerance. Free-radical scavenging capacities through the activity of superoxide dismutase or production of glutathione add another line of defence against the toxic effect of metals.

Author-supplied keywords

  • Ectomycorrhizal fungi
  • Extracellular chelation
  • Intracellular chelation
  • Metal tolerance
  • Transport system

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free