Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications

  • Chu K
  • Wu Q
  • Jia C
 et al. 
  • 115

    Readers

    Mendeley users who have this article in their library.
  • 145

    Citations

    Citations of this article.

Abstract

A novel particles-compositing method was used for the first time to disperse different contents of multi-walled carbon nanotubes (CNTs) in micron sized copper powders, which were subsequently consolidated into CNT/Cu composites by spark plasma sintering (SPS). Microstructural observations showed that the homogeneous distribution of CNTs and dense composites could be obtained for 0-10 vol.% CNT contents. The CNT clusters were appeared in the powder mixture with 15 vol.% CNTs, which resulted in an insufficient densification of the composites. The effective thermal conductivity of the composites was analyzed both theoretically and experimentally. The addition of CNTs showed no enhancement in overall thermal conductivity of the composites due to the interface thermal resistance associated with the low phase contrast of CNT to copper and the random tube orientation. Besides, the composite containing 15 vol.% CNTs led to a rather low thermal conductivity due possiblely to the combined effect of unfavorable factors induced by the presence of CNT clusters, i.e. large porosity, lower effective conductivity of CNT clusters themselves and reduction of SPS cleaning effect. The CNT/Cu composites may be a promising thermal management material for heat sink applications. © 2009 Elsevier Ltd. All rights reserved.

Author-supplied keywords

  • A. Carbon nanotubes
  • A. Metal-matrix composites
  • B. Thermal properties
  • E. Powder processing
  • E. Sintering

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free