FBXW7 mutations in melanoma and a new therapeutic Paradigm

  • Aydin I
  • Melamed R
  • Adams S
 et al. 
  • 26

    Readers

    Mendeley users who have this article in their library.
  • 22

    Citations

    Citations of this article.

Abstract

BACKGROUND: Melanoma is a heterogeneous tumor with subgroups requiring distinct therapeutic strategies. Genetic dissection of melanoma subgroups and identification of therapeutic agents are of great interest in the field. These efforts will ultimately lead to treatment strategies, likely combinatorial, based on genetic information.

METHODS: To identify "driver" genes that can be targeted therapeutically, we screened metastatic melanomas for somatic mutations by exome sequencing followed by selecting those with available targeted therapies directed to the gene product or its functional partner. The FBXW7 gene and its substrate NOTCH1 were identified and further examined. Mutation profiling of FBXW7, biological relevance of these mutations and its inactivation, and pharmacological inhibition of NOTCH1 were examined using in vitro and in vivo assays.

RESULTS: We found FBXW7 to be mutated in eight (8.1%) melanoma patients in our cohort (n = 103). Protein expression analysis in human tissue samples (n = 96) and melanoma cell lines (n = 20) showed FBXW7 inactivation as a common event in melanoma (40.0% of cell lines). As a result of FBXW7 loss, we observed an accumulation of its substrates, such as NOTCH1. Ectopic expression of mutant forms of FBXW7 (by 2.4-fold), as well as silencing of FBXW7 in immortalized melanocytes, accelerated tumor formation in vivo (by 3.9-fold). Its inactivation led to NOTCH1 activation, upregulation of NOTCH1 target genes (by 2.6-fold), and promotion of tumor angiogenesis and resulted in tumor shrinkage upon NOTCH1 inhibition (by fivefold).

CONCLUSIONS: Our data provides evidence on FBXW7 as a critical tumor suppressor mutated and inactivated in melanoma that results in sustained NOTCH1 activation and renders NOTCH signaling inhibition as a promising therapeutic strategy in this setting.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Iraz T. Aydin

  • Rachel D. Melamed

  • Sarah J. Adams

  • Mireia Castillo-Martin

  • Ahu Demir

  • Diana Bryk

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free