Field management effects on soil enzyme activities

  • Bandick A
  • Dick R
  • 8


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


There is growing recognition for the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. Eleven soil enzymes assays were investigated relative to soil management and soil quality at two study sites. Soils were sampled from the Vegetable Crop Rotation Plots (VRP) (established in 1989 in humid western Oregon) which compared continuous fescue (Festuca arundinacea) and four winter cover crop treatments in annual rotation with a summer vegetable crop. The second site was the Residue Utilization Plots (RUP) (initiated in 1931 in semi-arid Eastern Oregon) which is under a winter wheat-summer fallow and compared inorganic N, green manure and beef manure treatments. Soil also was sampled at the research center from a nearby grass pasture that is on the same soil type. The enzymes were α- and β-glucosidase, α- and β-galactosidase, amidase, arylsulfatase, deaminase, fluorescein diacetate hydrolysis, invertase, cellulase and urease. At both sites there was a significant treatment effect for each enzyme tested (P < 0.05). Enzyme activities (except α- and β-glucosidase and α- and β-galactosidase) were generally higher in continuous grass fields than in cultivated fields. In cultivated systems, activity was higher where cover crops or organic residues were added as compared to treatments without organic amendments. It was found that use of air-dried soil samples provided the same ranking of treatments by a number of enzyme assays and would facilitate adoption of these assays for practical or commercial applications. Deaminase was not a good indicator of soil quality, while β-glucosidase was suggested as an assay that reflects soil management effects and has microbial ecological significance because of its role in the C cycle.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • A.K. Bandick

  • R.P. Dick

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free