Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by multinuclear NMR

  • Mulder F
  • Hon B
  • Muhandiram D
 et al. 
  • 46

    Readers

    Mendeley users who have this article in their library.
  • 81

    Citations

    Citations of this article.

Abstract

The Leu99-->Ala mutant of T4 lysozyme contains a large internal cavity in the core of its C-terminal domain that is capable of reversibly binding small hydrophobic compounds. Although the cavity is completely buried, molecules such as benzene or xenon can exchange rapidly in and out. The dynamics of the unliganded protein have been compared to the wild-type protein by measuring the NMR spin relaxation rates of backbone amide and side chain methyl nuclei. Many residues surrounding the cavity were found to be affected by a chemical exchange process with a rate of 1500 +/- 200 s(-1), which is quenched upon addition of saturating amounts of the ligand xenon. The relationship between the structure, dynamics, and energetics of the T4 lysozyme mutant is discussed.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free