Forecasting transitions in systems with high-dimensional stochastic complex dynamics: A linear stability analysis of the tangled nature model

  • Cairoli A
  • Piovani D
  • Jensen H
  • 26

    Readers

    Mendeley users who have this article in their library.
  • 3

    Citations

    Citations of this article.

Abstract

We propose a new procedure to monitor and forecast the onset of transitions in high dimensional complex systems. We describe our procedure by an application to the Tangled Nature model of evolutionary ecology. The quasi-stable configurations of the full stochastic dynamics are taken as input for a stability analysis by means of the deterministic mean field equations. Numerical analysis of the high dimensional stability matrix allows us to identify unstable directions associated with eigenvalues with positive real part. The overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean field approximation is found to be a good early-warning of the transitions occurring intermittently.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free